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Abstract

The Naval Research Laboratory is planning to launch a tethered satellite system (TiPS)
in 1996. The system will consist of two small satellites connected by a 4 km tether. The
purpose of the system is to study the dynamics and survivability of tether systems. There will
be no attitude control system. Each of the subsatellites will have laser retroreflectors for laser
tracking. In addition, at the center of mass (CM) of the system, there will be a half wavelength
dipole to enhance radar tracking of the CM. The radar cross section (RCS) of the dipole will
be approximately equal to the RCS of each of the subsatellites. Since the RCS of the dipole is
highly sensitive to the aspect angle, and since it is likely that the tether system will be librating,
tracking of the dipole may be difficult. Consequently, the orbit determination will not depend
on tracking of the dipole.

In this paper the equations for the orbit and attitude determination of the system are
developed and the results of simulations of the expected accuracy are presented. By attitude
determination we mean attitude of the tether system, not attitude of each of the subsatellites.
The tether system is modeled as an extensible, massless tether with longitudinal damping. The
state consists of the epoch values of the CM position and velocity and the position and velocity
of the tether end mass relative to the CM. Batch least squares is used to estimate the state.
The state and variational equations are numerically integrated. Simplifications of the equations
of motion result in two harmonic oscillator equations with different frequencies. Some analysis
was performed to understand the impact of the simplifications on the orbit determination.

1 Introduction

The Naval Research Laboratory is building an experiment to study the physics of space tethered
systems and to understand the survivability of tethers in the current debris-strewn space environ-
ment. The experiment is named TiPS (Tether Physics and Survivability Experiment). In general
the orbit dynamics of a spacecraft must be inferred from processing ground observations. For a
tethered system the process is complicated by many factors: the potentially large distances of the
observed end masses relative to the CM, the pendulum motion of the tethered system, the quality,
quantity and frequency of the observations, the nonstandard orbital motion of the observed end
masses, the flexibility of the tether, and other perturbations specific to tethered systems. From the
experiment, data on the observed positions of the end masses will be archived for future study of

1Navy TENCAP Chair, Space Systems Academic Group, Naval Postgraduate School, Monterey, CA 93943
2Aerospace Engineer, Swales & Associates Inc., Beltsville, MD 20705
3Head, Mathematics and Orbit Dynamics Section, Naval Research Laboratory, Washington, DC 20375
4Student, Appalachian State University, Boone, North Carolina, 28608

1



tether dynamics. To achieve the physics goal, we must be able to predict the motion of the end
masses with sufficient accuracy for ground based satellite laser ranging facilities (SLR) to acquire
and track the end masses. This paper describes the algorithms and software developed to provide
for acquisition by SLR sites.

Figure 1: Tips Experiment in Deployed Configuration

The experiment (see Fig. 1) is being designed as a low cost secondary experiment piggy-backed
on a DoD satellite. Telemetry downlink from the satellite will be established for only a very brief
period when the tether is being deployed. Otherwise, the system will be completely passive. The
dynamics of the system as well as knowledge of the survival of the tether will be derived from laser
ranging data provided by ground based SLR sites. Tracking with lasers will provide high quality
range as well as azimuth and elevation data.

Radar tracking will also be provided by the Air Force and Naval Space Commands. Either
subsatellite or the dipole placed at the CM may be tracked. These data will then be processed in
the normal fashion to provide two line element sets. Two problems exist. The two subsatellites
are not in Keplerian orbits and the tracking data may consist of data on both subsatellites and the
dipole. The result will be at best a gross estimate of the position of the center of mass. Thus,
the data provided by the Space Surveillance system will not be sufficient for tracking the TiPS end
masses. Typically a ground based laser has a beamwidth of 100-200 meters at the altitude of TiPS.
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The normal solutions of radar “skin tracking” cannot meet this level of accuracy. The acquisition
problem for TiPS is more difficult because of the length of the tether and the oscillatory motion of
the end masses. For this reason it is necessary to estimate the parameters of the oscillatory motion.
Initially it is expected that laser acquisition will have to be enhanced by telescope assistance, which
is available at some SLR sites. Since telescopes require terminator lighting conditions it is expected
that initial SLR data will be somewhat spotty. Eventually it is expected that sufficient data will be
available to estimate the initial conditions of the end masses. Once good initial conditions for the
tether state are produced, they will be provided to the SLR sites for predicting the motion of TiPS.
This will enable the SLR sites to track TiPS whenever it is above the tracking horizon, given good
weather conditions.

NASA’s Goddard Space Flight Center will facilitate the tracking of the end masses by coordi-
nating activities with the SLR sites, developing and installing tether specific software, and passing
data and Extended Inter-Range Vectors (EIRV) between the SLR sites and NRL. An EIRV is an
Inter-Range Vector augmented with parameters for the dynamics of the end masses. Tracking data
from NASA as well as international SLR sites will be transmitted electronically to Goddard using
communication facilities set up for retroreflector equipped satellites like Topex. From there NRL
will receive the data by Internet and will process it into EIRVs. The EIRVs will then be sent elec-
tronically to Goddard for distribution to the SLR sites. It is expected that the normal updating will
take about 1-2 hours in duration.

For the orbital motion of the TiPS system, we will consider all the mass as if it is concentrated at
the center of mass instead of the center of gravity of the system. The reason we do not use the center
of gravity is because there is little difference between the two for TiPS and the center of gravity
changes for different orientations of the tether, which would complicate the mathematics needlessly.

2 System Description

Jettison Plate

Aft Panel

Norton

Transmitter

Ralph

NRL Timer Box

SEDS 
Electronics Box

Tether/Deployer

Marmon Clamp

Spring Cartridges

Battery

19”

26.5”

21.7”

9”

16”

Figure 2: TiPS Assembly with Skin in Place
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NORTON

RALPH

Timer
Battery

Transmitter Hybrid

Modulator

Jettison Spring
Cartridges

Separation 
Spring Cartridges

Figure 3: TiPS Assembly with Skin and Blankets Removed

The fully deployed TiPS payload consists of two bodies, Ralph and Norton, connected by a four
kilometer tether. The aft panel shown in Figure 2 is attached to the host vehicle. The only electronics
on the experiment is the SEDS[3] box provided by NASA which will count the number of turns of
the tether as it is deployed, providing information on the rate of deployment. The SEDS box is
located on Ralph. Norton does not contain any electronics. The timer is set to initiate separation
between Ralph and Norton. The separation of Ralph from Norton is expected to take about 30
minutes. The rate at which the tether unspools will be broadcast repeatedly to the ground for as
long as the battery holds out, approximately 8 hours. After this time TiPS will become a passive
satellite. Ralph weighs approximately 95.3 lbs, Norton 22.4 lbs, and the tether about 12 lbs.

The tether for TiPS is made of Spectra-1000 which is 2-3 mm in diameter. Woven in the center
of the tether is a yarn to make the tether puff up to increase its survivability.

3 Operations

TiPS is a self contained payload which will be jettisoned from a spinning host spacecraft. The
jettison will be effected by four springs which will provide approximately 3 feet per second delta-v.
Jettison attitude will be along the velocity vector. Upon jettison, the TiPS separation timer will be
initiated. The separation between Ralph and Norton will occur approximately 1.66 revolutions after
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jettison at a rate of approximately 16 ft/sec. At this time TiPS will be pointing ahead of nadir at
an angle of approximately 31o. The exact time of separation was determined by analysis to produce
maximum gravity gradient pull to insure the deployment does not “stall.” Both sets of springs can
be seen in Figure 3.

The initial orbit for TiPS will be circular somewhere between 450 and 550 nm at an inclination of
about 63.4o. The final altitude will be selected to balance the requirement for long term survivability
data and the desire to cleanse space of TiPS once its mission is over. Due to the cross sectional area
of the tether, it will experience considerably more drag than a normal satellite of its mass and size.
At the high end of the altitude range, the system would easily survive one complete solar cycle, but
would reenter in about 4-5 years at the low end of the altitude range. The exact altitude had not
been determined at the time of this report.

There are 18 retroreflectors mounted on both Ralph and Norton. Each retroreflector is one inch
in diameter made of fused silica with a highly reflective silver coating on the back surface. The
retroreflectors mounted on Norton are uncoated while those mounted on Ralph are coated with
TiO2 and SiO2. Thus both end-bodies will reflect green (532nm) while those on Ralph do not reflect
infrared (1064nm). The design allows unique identification of each end-body by those SLR sites
equipped with dual wavelength lasers. This will provide data to resolve anomalies such as tether
inversion.

As a consequence of the jettison orientation, it is expected that Ralph will be the bottom vehicle
and Norton the top.

4 Mathematics of Tether Orbit Determination

In this section we will provide an outline of the mathematics of the orbit determination process. We
will do so in a manner we hope is understandable without being too tedious in detail.

First let us discuss the general problem. The motion of an object is governed by a system of
differential equations. We frequently refer to the state vector as the solution to this system. To
predict the future state of the system we need to provide the initial conditions for the state vector.
The prediction can be accomplished by either integrating numerically the differential equations
or by applying an analytic solution, if such a solution exists, to the initial state vector. Since a
particular vector of initial conditions determines the solution to the differential conditions we need
to determine the initial conditions that best approximate the motion of the object of interest. The
orbit determination problem is to find the initial conditions which minimize the difference between
the estimated state and the observations. Assuming the environment does not change too radically
we can then use that estimated initial condition state vector to predict the future state of the system.

In general the differential equations for a system are nonlinear and coupled. In the past it was
necessary to simplify the equations so that computers could produce solutions in reasonable time.
However, simplifications mean substituting an approximation for the original system. This can
severely limit the model of the system, often to the extent that the solution does a poor job of
predicting the motion of the system. With the advent of fast and relatively cheap computers, we
now can discard the simplified system in favor of the full system. However, working with a decoupled
linear set of equations does provide some insight into the local behavior of the full system and for
this reason it is often valuable to build the simplified system as a sanity check on the full system.
We have developed both for this problem and will compare them.

For our purpose we developed a batch least squares system for processing observations. Many
variations of this approach exist, we chose ours to be compatible with the existing software used to
process SLR data for normal satellites.

4.1 Least Squares Estimation

To differentially correct the initial conditions for an object, one must also have the partial derivatives
of the state vector with respect to the initial conditions.
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Let us briefly become tutorial and review the least squares algorithm. Suppose O(t) is an
observation at some time t. Let X(t,Y) represent the state vector, Y represent the desired initial
conditions for the state vector and Y0 an estimate of the initial conditions for the state vector. Recall
the state vector is a function of time and the initial conditions. Then we form the cost function

J(Y) = [O(t)−X(t,Y)]TW [O(t)−X(t,Y)]

= [O(t)−X(t,Y0)− A(Y −Y0)]
TW [O(t)−X(t,Y0)− A(Y −Y0)],

where A = DY X(t,Y0), and W is a weight matrix for the observations. This is the least squares
equation. We seek to find a value for Y which minimizes the difference between the observation and
the prediction of the function. Setting J ′(Y) = 0 we get

Y = Y0 + (ATWA)−1ATW (O(t)−X(t,Y0)), (1)

which is the equation for updating the initial conditions. Given an initial estimate, Y0, for the initial
conditions one successively iterates using equation (1) until the residuals O(t) − X(t,Y0) become
sufficiently small.

In reality, we will have a large set of observations to process. In this case we merely extend O
to be a vector of observations, X(t,Y0) to be a vector of state vectors, and A to be a vector of
matrices. Each block in X and A is evaluated at the time of the corresponding observation.

Thus we need to compute the state vector for the system as well as the partial derivative of the
state vector with respect to the initial conditions.

4.2 Orbital Equations of Motion

A tethered system in orbit experiences two distinctly different motions. There is the orbital motion
of the system which is the orbit of the center of mass about the earth, and a librational motion of the
end bodies relative to the center of mass. Because of the two different types of motion, we build our
orbit determination system by augmenting a standard orbit determination system with equations
for the end bodies. For the center of mass we choose our coordinate frame fixed in the earth and
centered at the earth’s center. For the tether system we choose a coordinate frame rotating with the
center of mass of the system, a so called local vertical, local horizontal (LVLH) system (see Figure
4).

Suppose X is the solution of the 12 dimensional first order system of equations,

Ẋ = F(X). (2)

The first six of these equations are the usual equations for the center of mass and the last six
represent the motion of the end mass relative to the center of mass. If we let F = col(FCM ,FT ),
X = col(XCM ,XT ) and X0 = col(XCM0,XT0), then the initial value problem for the tether system
looks like

d

dt

(
XCM

XT

)
=

(
FCM(XCM )
FT (XCM ,XT )

)
,

(
XCM

XT

)

|t=t0
=

(
XCM0

XT0

)
,

where FCM is the right hand side of the orbit equations for the center of mass, and FT is the right
hand side of the differential equations for the tether. The tether equations will be discussed in
Section 4.4.

Although the function FCM will not depend on the tether dynamics, the tether equations will
depend on the motion of the CM. Differentiating Eq. (2) with respect to the initial conditions we
get

d

dt

∂X

∂(XCM0,XT0)
=

∂F

∂X

∂X

∂(XCM0,XT0)
. (3)

In component form we get
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d

dt




∂XCM

∂XCM0

∂XT

∂(XCM0,XT0)


 =




∂FCM

∂XCM
0

∂FT

∂XCM

∂FT

∂XT







∂XCM

∂XCM0

∂XT

∂(XCM0,XT0)


 . (4)

We will designate Â as the derivative of the state vector with respect to initial conditions,

Â =




∂XCM

∂XCM0

∂XT

∂(XCM0,XT0)


 .

The partial derivative function Â is then constructed by integrating the variational Eq. (4) for the
initial conditions

Â|t=t0 = I.

Thus there will be the 12 Eq. (2) and a matrix (12 x 12) for the variational Eq. (4) to be integrated.
To form the variational equations we must determine the entries ∂F/∂X. These terms will be
discussed in Section 4.6.

xcm
x

xT1

y

x

z

Earth

xT2

Figure 4: Coordinate Frames

4.3 Relating Observations to the State Vector

The coordinates of an end body are obtained from

x = xcm + RxTi,

where R is the rotation of the LVLH coordinate frame to the inertial frame, and xTi, i = 1, 2
represent Norton or Ralph respectively. Let the state vector for the center of mass of the tether
system be denoted by

Xcm = col(xcm,vcm),
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where xcm is the position vector for the center of mass, and vcm is the velocity vector for the center
of mass. The vector of initial conditions for the center of mass is

Xcm0 = col(xcm0,vcm0).

The state for the tether system is defined by

XT = col(xT ,vT ),

where xT is the Cartesian vector to the end body, and vT is the Cartesian velocity vector for that
body. XT is understood to be in the frame of reference rotating with the center of mass of the
system. We now define this rotating coordinate frame. The x axis in xT is radially outward, z is
orbit normal, and y is approximately along the velocity vector.

x

y

z

L1

θ ρ

φ

Figure 5: Spherical Coordinates

We will refer to XT 0 as the vector of initial conditions for the tether state vector. For now we
need not be concerned with whether we are in Cartesian or spherical coordinates.

Suppose f is a function of the state vector X. For example f might be the transformation from
earth fixed inertial coordinates to station fixed azimuth, elevation, and range coordinates. Then the
partial derivative with respect to the initial conditions would be

∂f

∂X0
=

(
∂f

∂Xcm0
,

∂f

∂XT0

)

=

(
∂f

∂Xcm

∂Xcm

∂Xcm0
+

∂f

∂XT

∂XT

∂Xcm0
,
∂f

∂XT

∂XT

∂XT0

)
.

Here we have made an assumption that the tether motion depends on the center of mass, but that
the center of mass motion about the earth does not depend on the tether end masses. While not
strictly true, the effect of the librational motion of the tether on the orbital motion is much smaller
than neglected forces and can be safely, and thank goodness, ignored.
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The state vector X is constructed by integrating numerically the differential equations for each
component. In the case of the center of mass, Xcm represents the state vector for the center of mass.
We provide in the next section the tether differential equations.

4.4 Tether Differential Equations

The tether system is modeled as two end masses connected by a massless, extensible tether with
longitudinal damping. We refer to Beletsky and Levin[1] for the following differential equations of
the tether system.




ẍ− 2ẏω − ω̇y − (1 + 2κ−1)ω2x

ÿ + 2ẋω + ω̇x− (1− κ−1)ω2y

z̈ + κ−1ω2z


 =

1

mA




Tx + Fx

Ty + Fy

Tz + Fz


 , (5)

where the stiffness term is 


Tx
Ty
Tz


 = −E

r
(
r

l
− 1)




x
y
z


 ,

κ = 1 + e cos f , ω is the angular velocity of the center of mass, r is the distance from the center of
mass to the end mass, E is called the extensional stiffness, l is the unconstrained length from the
center of mass to the end mass, e is the orbital eccentricity, and f is the true anomaly. Let us be
careful to interpret these equations correctly. In [1] the equations are referenced to some massive
object at one end point producing a center of mass at that end point. These equations are still valid
when the center of mass is somewhere in the middle of the two object as for TiPS.

Let us be precise about what exactly is modeled in these equations. Within the left side is
the difference in the Keplerian forcing term −µr/r3 evaluated at the center of mass, and the end
mass. The residual forcing terms on the right could include forces like higher order gravitational
harmonics, drag, solar radiation pressure, and relativistic forces. However, in all cases the forces
in the tether equations are the differences between the force acting on the end mass, and the force
acting at the center of mass. Because the tether for TiPS is only 4 km long, these force differences
are extremely small and thus will be neglected. However, there is the accumulated gravity gradient
tension along the tether that is accounted for in the vector function T. We include in the model an
internal viscous damping term caused by the friction of the tether fibers.

A tethered system has a pendulum like motion, therefore, it is often convenient to consider the
motion in spherical coordinates. Thus the state vector in spherical coordinates for the tether system
is given by

XT = col(θ, θ̇, φ, φ̇, r, ṙ).

The angles are illustrated in Figure 5. Relating them to (x, y, z) we have

x = r cosφ cos θ, y = r cosφ sin θ, z = r sinφ.

The Cartesian differential equations can easily be converted to spherical coordinates by applying
the matrix

A =



− sin θ cos θ 0
− cos θ sinφ − sin θ sinφ cosφ

cos θ cosφ sin θ cosφ sin φ


 ,
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to the differential equations. The spherical equations become

θ̈ + ω̇ + (θ̇ + ω)

(
2ṙ

r
− 2φ̇ tanφ

)
+

3ω2

κ
sin θ cos θ =

Fθ
mr cosφ

φ̈ +
2ṙ

r
φ̇ +

(
(θ̇ + ω)2 +

3ω2

κ
cos2 θ

)
sin φ cosφ =

Fφ
mr

r̈ − r

(
φ̇2 + (θ̇ + ω)2 cos2 φ +

ω2

κ
(3 cos2 φ cos2 θ − 1)

)
= − T

m
+
Fr
m
.

(6)

The relation between the Cartesian and spherical force terms is given by




Fr
Fθ
Fφ


 = A




Fx
Fy
Fz


 . (7)

We make a few comments that we think are important. The spherical equations are more intuitive
than the Cartesian form. As we will see presently, certain forces like damping are more easily
expressed in spherical coordinates. In constructing the spherical form of the equations one sees that
a division by cosφ was made. This makes the equations invalid for φ close to π/2. While the system
is expected to be more or less nadir pointing we still did not want to have a nonessential singularity
in the equations. However, this does not make the Cartesian form of the equations applicable to
large angles because the tether could go slack in those instances and the equations would be invalid.

4.5 Damping

The radial displacement can be expected to experience a certain amount of damping due to the tether
fibers rubbing on each other and other factors. Thus we introduce into our equations a longitudinal
damping term cṙ proportional to the radial velocity of the tether. This is easily introduced in the
spherical equations (6) by

Fr = −cṙ,
where we would want c to be some small positive quantity. The damping is expected to be 1-2% of
critical damping. We will attempt to estimate the damping parameter c. If we invert the A matrix
we get the Cartesian forcing terms,




Fx
Fy
Fz


 = A−1




Fr
Fθ
Fφ


 =



−cṙx/r
−cṙy/r
−cṙz/r


 . (8)

Notice that A−1 = AT , the transpose of A.
This constitutes the complete picture of the equations of motion that we will work with for this

paper.

4.6 Variational State Matrix

We now discuss how the Â matrix of partial derivatives is determined. As was mentioned previously,
this matrix is determined by integrating the variational equation (4). We need only be concerned
with forming the partial derivative matrix of the forcing function F.

The first entry in equation (4) is
∂FCM

∂XCM
.

This term is the same as for any orbiting object, and thus will not be addressed here.
Rewritting Eq. (5) as a first order system, we get
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d

dt




x

ẋ

y

ẏ

z

ż




=




ẋ

−(−2ẏω − ω̇y − (1 + 2κ−1)ω2x) + Tx/ma + Fx/ma

ẏ

−(2ẋω + ω̇x− (1 − κ−1)ω2y) + Tx/ma + Fy/ma

ż

−κ−1ω2z + Tz/ma + Fz/ma




(9)

The right side of equation (9) was previously referred to as the function FT .

4.6.1
∂FT

∂XCM

The term
∂FT

∂XCM

involves differentiating the angular velocity ω, ω̇, and κ with respect to the orbital initial conditions.
For the developments in this section only, let us avoid a blizzard of subscripts by letting XCM =
col(x, y, z, ẋ, ẏ, ż).

First we introduce the canonical polar variables[2] (r, θ, h, R,Θ, H), where r is the radial distance,
θ is the argument of latitude, h is the right ascension of the node, R is the radial velocity, Θ is the
angular momentum, and H is the polar component of the angular momentum. The relation to the
Cartesian coordinates and Cartesian velocities is

x = r(cos θ cosh− sin θ cos I sinh),

y = r(cos θ sinh+ sin θ cos I cosh),

z = r sin θ sin I,

ẋ =
Θ

r
(− sin θ cosh− cos θ cos I sin h) +

R

r
x,

ẏ =
Θ

r
(− sin θ sinh+ cos θ cos I cosh) +

R

r
y,

ż =
Θ

r
cos θ sin I +

R

r
z.

(10)

Then we get

κ = 1 + e cos f, ω =
dθ

dt
=

Θ

r2
, ω̇ =

d2θ

dt2
= −2

r

Θ

r2
R.

We can use the fact that the transformation from Cartesian variables to the polar variables
is canonical, and that Poisson brackets, defined by ( ; ), are invariant with respect to canonical
transformations. It is then easy to construct

∂Θ

∂x
=

(
Θ; ẋ

)
Cartesian

=
(
Θ; ẋ

)
polar

= −∂ẋ
∂θ

.

Similar constructions produce the following partial derivatives for Θ,

∂Θ

∂x
= −∂ẋ

∂θ
,

∂Θ

∂y
= −∂ẏ

∂θ
,

∂Θ

∂z
= −∂ż

∂θ
,

∂Θ

∂ẋ
=

∂x

∂θ
,

∂Θ

∂ẏ
=

∂y

∂θ
,

∂Θ

∂ż
=

∂z

∂θ
.

11



The partials for R are

∂R

∂x
= −∂ẋ

∂r
,

∂R

∂y
= −∂ẏ

∂r
,

∂R

∂z
= −∂ż

∂r
,

∂R

∂ẋ
=

∂x

∂r
,

∂R

∂ẏ
=

∂y

∂r
,

∂R

∂ż
=

∂z

∂r
.

The partials of r are more straight forward,

∂r

∂x
=

x

r
,

∂r

∂y
=

y

r
,

∂r

∂z
=

z

r
,

∂r

∂ẋ
= 0,

∂r

∂ẏ
= 0,

∂r

∂ż
= 0.

We now have the partials of the orbital quantities in equation (5) with respect to the orbital Cartesian
coordinates given by

dw = ω

(
dΘ

Θ
− 2dr

r

)

dω̇ = ω̇

(
dΘ

Θ
+
dR

R
− 3

r
dr

)

dκ = κ

(
2dΘ

Θ
− dr

r

)
.

We will derive in detail one of the partial derivatives in ∂FT /∂XCM . The others can be derived
similarly. Selecting FT2 we get the partial derivatives

∂FT2

∂x
=

∂FT2

∂ω

∂ω

∂x
+
∂FT2

∂ω̇

∂ω̇

∂x
+
∂FT2

∂κ

∂κ

∂x

= 2(ẏT + (1 + 2κ−1)ωxT )
∂ω

∂x
+ y

∂ω̇

∂x
− 2κ−2ω2xT

∂κ

∂x
. (11)

Notice we have now put the subscript T on the variables that are the coordinates of the tether end
mass in the rotating coordinate system.

4.6.2
∂FT
∂XT

The partials of FT with respect to the tether state vector are easy to compute. We explicitly provide
one of them,

∂FT2

∂x
=

(
1 +

2

k

)
ω2 − E

m

(
1

l
− 1

r
+
x2

r3

)
+
∂Fx
∂x

,

∂FT2

∂ẋ
=

∂Fx
∂ẋ

,

∂FT2

∂y
= ω̇ − E

m

xy

r3
+
∂Fx
∂y

,

∂FT2

∂ẏ
= 2ω +

∂Fx
∂ẏ

∂FT2

∂z
= −E

m

xz

r3
+
∂Fx
∂z

,

∂FT2

∂ż
=

∂Fx
∂ż

.

12



Be aware that we have shifted our notation back to using (x, y, z, ẋ, ẏ, ż) for the Cartesian coordinates
of the tether end mass.

The partials of the damping function, Fx, are

∂Fx
∂x

= −
(
c (2xẋ+ yẏ + zż)

r2
− 2x2c (xẋ + yẏ + zż)

r4

)

∂Fx
∂ẋ

= −x
2c

r2

∂Fx
∂y

= −xc ẏ
(
x2 + y2 + z2

)
− 2y (xẋ+ yẏ + zż)

r4

∂Fx
∂ẏ

= −xyc
r2

∂Fx
∂z

= −xc
ż

(
x2 + y2 + z2

)
− 2z (xẋ + yẏ + zż)

r4

∂Fx
∂ż

= −xzc
r
.

4.7 Simplifications

Currently we plan to numerically integrate the partial derivatives, Â. However, analytic partials
could significantly reduce the computation time. For this reason and to obtain insight into the
tether dynamics it is worthwhile to consider several simplified versions of the equations. We start
with the spherical form for the tether equations, Eq. (6). Assume the system is in a near circular
orbit and neglect the coupling between r, θ and φ. With these assumptions Eq. (6) become

θ̈ +
3

2
ω2 sin(2θ) = 0,

φ̈ + 2ω2 sin(2φ) = 0,

r̈ + cṙ +

(
E

mal
− 3ω2

)
r =

E

ma
.

(12)

The first two of Eq. (12) can be solved in terms of elliptic functions and the third is a damped
harmonic oscillator. For small θ and φ, Eq. (12) become

θ̈ + 3ω2θ = 0,

φ̈ + 4ω2φ = 0.
(13)

which are the equations of motion of harmonic oscillators. The frequencies of these oscillations are√
3ω and 2ω, respectively. For TiPS the periods of the intrack and crosstrack oscillations would

be approximately 60 and 52 minutes respectively. The problem is that large oscillation amplitudes
are expected and the period of the oscillations is a function of the amplitude. Over a few orbits,
convergence of the least squares process could be difficult. Thus, a better estimate of the oscillation
period is needed. A solution can be formulated as a complete elliptic integral of the third kind. The
basic equation is

β̈ +
b

2
ω2 sin 2β = 0, (14)

where b = 3, for θ and b = 4, for φ. Multiplying equation (14) by β̇ and integrating we get

β̇2 − bω2

2
cos 2β = const

13



Substituting cos 2β = 1− 2 sin2 β we get

β̇2 + bω2 sin2 β = E,

where E is a constant. If we let βm be the maximum value for β which occurs when β̇ = 0, then
E = bω2 sin2 βm. Integrating over a fourth of the period we get

T = 4

∫ βm

0

dβ

E − bω2 sin2 β
.

Substituting sinα = sinβ/ sin βm we get

T =
4

ω
√
b

∫ π/2

0

dα

1− k sin2 φ
, k = sin2 βm.

The solution then becomes

T =
4

ω
√
b
K(k),

where K is the elliptic integral of the third kind. The elliptic integral can be expanded in a series
of the modulus k by

K(k) =
π

2

(
1 + (

1

2
)2k + (

1 · 3
2 · 4)2k2 + (

1 · 3 · 5
2 · 4 · 6)3k3 + . . . .

)

θ φ θ period φ period θ period φ period
coupled eqs. coupled eqs. elliptic int elliptic int

(deg) (deg) (min) (min) (min) (min)

5 5 60:39-61:42 52:40-53:07 61:09 52:58
45 0 71:54-72:00 N/A 72:02 52:52
0 45 59:51-71:11 57:48-58:34 61:02 62:23
45 45 70:31-73:01 56:26-66:31 72:02 62:23
75 0 103:47-110:56 N/A 100:47 52:52
0 75 80:09-Pinwheel 59:07-94:05 61:02 87:17
75 75 82:57-Pinwheel 56:02-107:14 100:47 87:17

Table 1: Frequencies of Oscillations.

We have used the elliptic integral solution to modify the frequencies one gets for Eq. (13).
The simplifications of (5) produced the decoupled Eq. (12), which, for the angles, is a system of
two harmonic oscillators with different frequencies. The coupling in Eq. (5) results in the tether
oscillations being nonperiodic. In Table 1 we provide some periods for the uncoupled system and
ranges on the elapsed time for the angles to oscillate from peak to peak for the coupled equations.
We will call the peak to peak elapsed time the period of oscillation even though the coupled system
is not periodic. As can be seen the periods for the coupled system can vary by several minutes. Not
accounting for this variation could affect the convergence of the orbit determination, especially when
processing data over a couple of days. For this reason, we feel the uncoupled linear solutions are
inadequate for anything but small oscillations about nadir. Since we expect TiPS to have oscillations
with large amplitude, we have developed our system with the coupled Eq. (5).

5 Software Development

The orbit determination algorithms described previously have been implemented in a Fortran pro-
gram. The integrator is a 4/5 Runge-Kutta technique. The orbit equations incorporate geopotential
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forces and several different drag models. We have implemented the Cartesian equations given by
Eq. (9) and partial derivatives as discussed in Section 4.6.

We have also developed a program that implements the analytic solutions for Eq. (12) with the
frequency estimation discussed in Section 4.7. For the partials we programmed the partial derivatives
of the analytic solution.

Limited validation of these programs has been performed at this time. The programs will differ-
entially correct initial conditions using simulated tether data as long as the starter initial conditions
are not too far off the true initial conditions. The process we go through is to generate tether orbital
data by applying one of the tether models to the initial conditions for the tether state vector. Then
we feed corrupted initial conditions to the differential correction program. As long as the corrupted
initial conditions are not too far from the truth, the differential correction will converge to the true
initial conditions. However the differential correction system is very sensitive to the starter initial
state. For small amplitudes in the angles one can normally start with a tether state of zero for all
tether angles and angular rates. As one progresses up to tether initial conditions corresponding to
50o in intrack and crosstrack angles the starter initial conditions cannot be more than a few degrees
off of the maximum amplitude. This is not surprising since large angles in tether oscillations could
produce observations that appear to be intrack or crosstrack orbital variations and could serve to
“confuse” the center of mass part of the orbit determination.

True IC A Priori Estimate
Orbit Tether Orbit Tether

a: 7401.36 θ: 20.0 a: 7400.40 θ: 16.0

e: 0.000626 θ̇: 0.0 e: 0.000607 θ̇: 0.0
i: 63.435 φ: 20.0 i: 63.442 φ: 16.0

f: -140.095 φ̇: 0.0 f: -153.763 φ̇: 0.0
ω: 0.049 r: 3.0002 ω: 13.729 r: 3.1000
Ω: 90.000 ṙ: 0.0 Ω: 89.991 ṙ: 0.0

Table 2: Initial Conditions for Tether Orbit Determination.

We provide in Tables 2 and 3 the initial conditions and results from one differential correction
with the system. Angles and angular rates are in degrees and degrees/sec, distances are in kilometers
and velocities are in kilometers/second. For the orbit determination the tether initial conditions were
held fixed for four iterations in order to allow the center of mass to converge without corrupting
the first estimate of the tether initial conditions. Otherwise the program is unable to converge to
the correct initial conditions for the full system. A data set spanning 24 hours was used for this
run, with the data distributed at 60 second intervals. The equations for the predictor and the orbit
determination used the coupled equations in Eq. (5) and the partial derivatives described in Section
4.6.

We are now proceeding to embed the tether equations and partial derivatives into a standard
orbit determination system called GEODYN which will be used for the operational system.

6 Analysis

We expect to have a reasonably good estimate of the orbit after jettison. Separation occurs 175
minutes after jettison and the first pass over a tracking station should occur within several orbits.
Although we will have some knowledge of the attitude of TiPS at the time of separation, our
knowledge of the initial state of the deployed system will be based on a crude deployment simulation.
Thus, our initial tether state will not be very good, although we will have a good estimate of the
orbit of the center of mass. Therefore, two key questions which must be answered are:

• What is the range of convergence of the DC for the tether system attitude?
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Iteration RMS X Y Z θ φ r
(m) (km) (km) (km) (deg) (deg) (km)

0 69876.0 2125.6 -5675.3 -4254.2 16.0 16.0 3.10
1 15845.6 2123.1 -5681.7 -4246.9 16.0 16.0 3.10
2 1129.3 2126.1 -5677.1 -4252.3 16.0 16.0 3.10
3 1011.0 2126.6 -5676.3 -4253.3 16.0 16.0 3.10
4 921.3 2126.6 -5676.3 -4253.2 16.0 16.0 3.10
5 335.3 2126.6 -5676.3 -4253.2 16.0 17.6 3.00
6 1022.3 2126.6 -5676.3 -4253.2 22.4 21.5 3.02
7 482.6 2126.6 -5676.3 -4253.2 21.6 20.5 3.00
8 117.3 2126.6 -5676.3 -4253.2 20.1 20.2 3.00
9 21.6 2126.6 -5676.3 -4253.2 20.1 20.0 3.00
10 0.3 2126.6 -5676.3 -4253.2 20.0 20.0 3.00
11 0.0 2126.6 -5676.3 -4253.2 20.0 20.0 3.00

Table 3: Convergence to a Solution.

• Is an algorithm needed to give an estimate of the tether state so that the DC will converge?

A pointing (Extended Inter-Range) vector will be supplied by NRL to the laser tracking sites.
Some of the sites have a search capability, while others do not. The SLR sites are given in Table
4. For those sites that have a search capability it is desirable that the end mass be in the laser
footprint. For those sites without search capability to obtain tracking data, the end mass must be
in the footprint. At the expected range of the tether, this footprint is several hundred meters. Thus
we need to know

• What is the prediction time for which the end mass will be within the SLR footprint or for
how long is the EIRV valid?

• How many passes are needed to converge on an EIRV with sufficient accuracy to provide
pointing for future passes?

Other questions which need to be answered are:

• What is the maximum allowable fit span for the DC?

• Do we need to and will we be able to estimate the tether damping?

The analysis is focused on answering these questions. The results to date are discussed below.
Table 5 shows the range of convergence of the DC as a function of the pitch (θ) and roll (φ)

libration amplitude. Truth was generated using an orbit propagator and the coupled differential
equations, Eqs. (5), for the tether with the initial state in the column ”True IC”. The attitude
rates, θ̇ and φ̇, were zero. A ten minute pass for a site was assumed with range, azimuth and
elevation data generated every fifteen seconds. Perfect observations were used. The initial state
estimate for the CM orbit was corrupted from the truth and the initial estimates for the pitch
and roll amplitude were varied to determine the range of convergence. The limit of the range of
convergence is given in the column ”A Priori Estimate”. We see that the range of convergence is
10-15 degrees except at very large libration amplitudes. From these results we conclude that an
algorithm for providing an initial estimate of the tether attitude state is needed for the DC. An
algorithm equivalent to the Herrick-Gibbs for initial orbit determination is needed.

7 Summary

For normal satellites, the motion of the center of mass is decoupled from the attitude motion, and
the orbit and attitude determination can be performed independently because the observations can
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Station Organization Min Elevation Angle
(deg)

Haleakala NASA 20
Easter Island NASA 20
Quincy NASA 20
Monument Peak NASA 20
Starfire Optical Range DoD 30
McDonald Observatory NASA 20
Greenbelt NASA 30
Arequipa NASA 20
Yarragadee NASA 20
Herstmonceaux EUROLAS 20
Grasse EUROLAS 20
Wettzell EUROLAS 20
Graz EUROLAS 20
Orroral Pacific 20

Table 4: Average SLR Coverage

True IC A Priori Estimate

θ φ θ φ
10 10 0 0
15 15 5 5
25 25 10 10
35 35 15 15
45 45 25 25
50 50 40 40
55 55 48 48
60 60 56 56

Table 5: One Pass Range of Convergence. Ob-
servations generated without noise.

be considered to be of the center of mass. In contrast, for a tethered satellite system when one or
both subsatellites are tracked, the observations are affected by the attitude motion of the tether
system. Therefore, the orbit determination of the center of mass of the tether system cannot be
decoupled from the attitude determination of the system. In this paper the method for the orbit
and attitude determination of TiPS has been described.

The tether has been assumed to be massless and extensible with viscous damping. The motion
of the tether system is described by the motion of the center of mass (CM) of the system and the
motion of the end masses relative to the CM in a local vertical, local horizontal coordinate system.
The equations of motion and the variational equations are numerically integrated. Analytic partials
for the attitude motion have also been developed and evaluations on their use are planned. Since
numerical integration is used there are no restrictions on the orbit model. In this study a 4 x 4
geopotential model with a MSISE drag model was used.

Conclusions to date are:

• The range of convergence for the libration amplitude in the differential correction (DC) is
10-15 degrees except for very large libration amplitudes.

• An algorithm for providing an initial estimate of the libration amplitude and rates is needed
for the DC to ensure that the initial estimate is within the 10-15 degree maximum libration
amplitude.
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